Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries.

نویسندگان

  • Jianbiao Lu
  • Ruiqiang Guo
  • Weijing Dai
  • Baoling Huang
چکیده

P-Type polycrystalline silicon-germanium (SiGe) thin films are grown by low-pressure chemical vapor deposition (LPCVD) and their thermoelectric properties are characterized from 120 K to 300 K for potential application in integrated microscale cooling. The naturally formed grain boundaries are found to play a crucial role in determining both the charge and thermal transport properties of the films. Particularly, the grain boundaries create energy barriers for charge transport which lead to different dependences of charge mobility on doping concentration and temperature from the bulk counterparts. Meanwhile, the unique columnar grain structures result in remarkable thermal conductivity anisotropy with the in-plane thermal conductivities of SiGe films about 50% lower than the cross-plane values. By optimizing the growth conditions and doping level, a high in-plane figure of merit (ZT) of 0.2 for SiGe films is achieved at 300 K, which is about 100% higher than the previous record for p-type SiGe alloys, mainly due to the significant reduction in the in-plane thermal conductivity caused by nanograin boundaries. The low cost and excellent scalability of LPCVD render these high-performance SiGe films ideal candidates for thin-film thermoelectric applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The critical growth velocity for planar-to-faceted interfaces transformation in SiGe crystals

Related Articles Disordered surface structure of an ultra-thin tin oxide film on Rh(100) J. Appl. Phys. 111, 064907 (2012) Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films J. Appl. Phys. 111, 053522 (2012) Control of the optical and crystalline properties of TiO2 in visible-light active TiO2/TiN bi-layer thin-film stacks J. Appl. Phys. 111, 024301 (2012) Surfact...

متن کامل

Cadmium Oxide Thin Films Deposited by a Simplified Spray Pyrolysis Technique for Optoelectronic Applications

Cadmium oxide thin films were fabricated on glass substrates by a simplified and low cost spray pyrolysis technique at different substrate temperatures. The X-ray diffraction study showed that irrespective of substrate temperature all the films exhibits a preferential orientation along the (1 1 1) plane. The values of crystallite size were found to be in the range 20.72 – 29.6 nm. The perce...

متن کامل

Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film

Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients an...

متن کامل

Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries

It is shown that a finite acoustic mismatch between structure and barrier materials in low-dimensional structures leads to the acoustic phonon confinement, which in its turn brings about a corresponding decrease of the phonon group velocity and modification of the phonon density of states. These factors contribute to the reduction of the in-plane lattice thermal conductivity, thus allowing one ...

متن کامل

The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys.

Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT∼ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 7 16  شماره 

صفحات  -

تاریخ انتشار 2015